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Abstract

Confidence intervals for the population median based on

interpolating adjacent order statistics are presented. They are

shown to depend only slightly on the underlying distribution.

A simple, nonlinear interpolation formula is given which works

well for a broad collection of underlying distributions.
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1. Introduction-

Suppose X, .... Xn is a random sample of size n from a

distribution with absolutely continuous distribution function F(x-e)

and density f(x-e). Further, suppose F(O) = , uniquely, so that

5 's the unique median; no shape assumption is imposed on F

Let X ; . X denote the order statistics. Then the(1) (n)

interval rX (d) x (n d + l )  is a simple distribution-free confidence

interval for - The confidence coefficient y = 1 - 2P(S<d) where

S has a binomial distribution with parameters n and . If S

denotes the sign test statistic for testing H0 : = 0 versus HA :6 0,

then the interval corresponds to inverting the acceptance region of

a size a = 2P(S<d) test. See Hettmansperger (1984a, Section 1.5).

This confidence interval is quite versitile since it makes no

shape assumption on the underlying distribution, is easy to compute,

and requires only a binomial table to establish the confidence co-

efficient. In Hettmansperger (1984b) we recommend using the interval

to form the notches in a notched box plot and construct simple two

sample tests based on comparing these intervals. The Minitab

computing system uses these intervals in their box plot routine.

Because of the discreteness of the binomial distribution,

for small to moderate sample sizes the available set of possible

confidence coefficients is rather sparse. In this paper we consider

the problem of interpolating ad-acent order statistics to form

confidence intervals with intermediate values of the confidence co-

effic:ents. The interpolated intervals are no loncer distribut.on

free in general; however, we w;ll show :hat -he :c.fidence cc-

i:lent depends ;nl,' slichtl': on tne ' erl: - F :r a broa'

-Cf str_ut]zns. aL .e ",JL h... Xha- i~near



interpolation is not appropriate, and we will provide a simple

interpolation formula that works well in most practical situations.

2. Properties of the Interpolated Intervals.

Suppose IX d,X and [X ,X n are(d) (n-d+l) (d+l)' (n-d)

Yd 1 ad and Yd+l = 1 - id+l confidence intervals for e

respectively. Then, from the binomial distribution, we have

2 d ..

or

~d+l Yid d 2

This links the successive intervals based on d and d+l

Define, for 0 5 X < 1

XL = (1-X(d) +  X(d+l)

XU  (1- ) X +x
( dl) + (n-d)

and let y be the confidence coefficient for [XLu] Then

Yd+l Y < Y'd and we wish to establish the connection between 1 and

y . Given - , we will present a simple interpolation formula for

finding . ; see (7) in Section 3. Note that

y = P (X L86<X5

L U

= 1 - P(<XL) - P (e>Xu)

L U

=.l--o-.



Proposition 1. let z x(1-). Thern

(2)

-(n-d) 1jf (-F (-ay)] [F (y)] n dF(y)

Proof. Without loss of generality let ewo. Let D denote the

set {L(x,y): < x < y < -, (l-X)x + Xy > 0} . Then, denoting

the joint density of X ()and X (l by f(x,y), we have

Ot= P(O<X L

= fD f f(x,y)dxdy

cy(d1 (n-ddl nd

n! -c (dl !(-d [F() (-F Y) I f () f - d(y)y

__________l) d d (y0 --

The formula for at, now follows from the fact that

P(X dl> 0) n: f F(y)) d(1-F (y)Ind- dF(y)

ad+l
2

The formula for a ~ follows in a similar way.

Proposition 2. Suppose f is symetric about 0 .Then

(i a L OL (3

(ii) if i t follows that

4 - --'n I

n -d!



Proof. Part (i) follows at once from Proposition 1 since

F(sy) = 1 - F(-oy) In part (ii), note that X-1 implies

ai, so that we have

f'[F(-y)] l[1-F(y)] n-d-ldF(y) = f [1-F(y)J n-ldF(y)
0 0

ll1n

The formulas in (ii) now follow from the result for aL in

Proposition 1 and the result in (1).

Given a desired y , define the interpolation factor I

by

1 (5)
Yd Yd+l

Note that I depends upon A through y so we will write I()

when it is necessary to express this dependence.

Proposition 3. Let a = X/(I-X) Suppose f is symmetric

about 0 Then

n d n-d-l(i) M(X) = 1 - (n-d)2n f[F(-y)] d[l-F(y)n dF(y) (6)
0

1(0) = 0, I(f) d/n and I(X) 1 1 as X - 1

(ii) If F is sufficiently regular so that differentiation can

be caried out under the integral and if f'(x) > 0 for x : 0,

then I() is a continuous and strictly increasing convex

function of X



Proof. Using y = l-2Q , from (5) and (1), we have

I = [ad+i/2 - ad/2 / n]1 . The formula for I now follows from

Propositions 1 and 2 by substitution. The limit follows by the

dominated convergence theorem since F(-ay) - 0 as a - = for y > 0.

Part (ii) follows by verifying that I'(X) > 0 and I''(X) > 0

This proposition shows at once that linear interpolation

is inappropriate. If we used linear interpolation then I(1) must

be equal to . However, I(J) = d/n which is less than .

For example with n=10, d=2, 7d = .9786, yd. 1 = .8907 , we have

I = d/n = .2 and y = .9610, corresponding to X = . Linear

interpolation yields .9347. As a crude approximation take

d - n/2 -Zn /2 + .5 , where Z is the ad/2 quantile from the

standard normal distribution, then

d .1 Z 1 1
n 2 2 2n 2

2n

Further, since I(J) = d/n , we have an additional

distribution-free interval when f is synmmetric. This helps in the

search for an interpolation formula since the curve for I(X) must

pass through the ordinates 0 , d/n , and 1 , at least for a

symmetric f . In principle, given we would need to specify

F to find I according to (6). In practice, we wish to specify I

through y , and find X . From Part (ii) there exists a strictly

increasing concave curve that relates X to I but is generally

impossible to find because of the complexity of (6).

In the next section we find I() for several different

distributions. We show that the curves are quite close to one another.



We then select one which yields a particularly simple formula for I(X),

(it results when F is the double exponential distribution), and

invert it to provide a formula for X in terms of I

3. Examples and a Recommendation

In this section we provide explicit formulas for I (X)

for underlying uniform and double exponential distributions and an

asymmetric distribution formed by piecing together double exponential

and logistic distributions. We also provide numerical results,

based on numerical integration, for the ncrmal and Cauchy distributions.

The numerical integrations were carried out using the method of

Donker and Piessens (1975).

Numerical examples are given in Tables 1 and 2.

Example 1. The double exponential distribution. The distribution

function is given by F(x) = 2- 1exp(x) if x < 0 , and 1 - 1exp(-x)

if x Z 0 In (6) replace F(-ay) by 1 - F(ay) and then

J~ - ~ y ]d )n-d-l fl)n c
[l-F(ay)] [1-F(y)] dF(y) --= n f 0exp{-y(d+n-d)}dy

= [n+d(a-l)]-1

Hence, from (6), I( ) = dc/[n+d(a-l)] Recalling that 0 X/(l-X)

we find

(n-d)Ik = (7)
d + (n-2d)I

... °.



As a final remark, note that if we take a curve fitting approach

and try to find a concave curve through (0,0), (d/n,f) and (1,1),

then (7) results when we fit A = aI/(b+cI). Polynomial fits were

not very satisfactory and (7) represents a simple ratio of linear

polynomials. -. .

Example 2. The uniform distribution on (-1,1). The distribution

function is given by F(x) = 0 if x < -1, 2- (x+l) if IxI 6 1 ,
-l

and 1 if x > I Note also that F(-oy) = 0 if y > a
-i -i -l -l
2 (-ay+l) if -o <y :: , and 1 if y<-o Now,

using a binomial expansion on (1-ay)d  and the beta integral, we have,
-1

when a - 1 (X5f)
codn-- n i d n-d- iy .

[F(-cry)]d 1-F(y) n-d-lF(y) (l-y) (l-y) dy
o 2j a

= l n  d ! (n -d - 1)!n t  d - 1 j  n j...

12= n! I(a d-j (8)

When a-I < 1 (L>) we have d n ! (8

f
f F (oy ]d[1F () n-dld (y() (l-o)d (l-y) ndldt

= d (n1 l d n-d - (
00d (n , d- n-d-l I d -

n. j 0 (- - n

(9)

The formulas (8) and (9) can then be used to calculate I(M) for

various values of X

. . . .i.



Example 3. Pieced together double exponential and logistic

distributions. The distribution function is given by

F(x) 2- exp(X/T) if x < 0, and [ 1+ exp (-x)1 if X 0.

If T 2, the density function is continuo~us, the first quartile

is -1.39, and the third quartile is 1.1. If T 10, there is a

jump in the density at 0 , the first quartile is -6.9, and the

third quartile is 1.1. Because of the asymmetry we must evaluate

CLand ot separately. See formulas (2).

We have

f [F(_ay) [ (1 - F (y)]n- -dF(y)

(f1jd 00 ad -n+d-1
-2 f- aexp[-y1-T + n-dI]{1l( + exp(-y)} dy (10)

and

d n-d-l
1 l F (-ay)] (F (y)] dF(y)

- i 1d fwexp.-yfd + 2---db)( + exp(-y)! ddy . (11)

OTJ 0 T

By making the change of variable u exp(-y) both integrals can

be reduced to the form

f u'-1 (+u) Mdu ~J ~ 'j (N+j)- (12)

See Gradshten and Ryzhik (1965 p.285). Using (12), (10) can be

written as

ad
(lF~nd (j! -1)1ladrad fad )7 (ad

.......................................



and (1) can be written as

n-d a' (( ! 2-l
U (j 2) -d- + 1... -d- + j d + + i

'1,-) OT J -
j=O

These infinite series are straightforward to approximate. For

large j the (j+l)st term is roughly one-half of the jth term.

This means that the tail of the series is roughly equal to the

last term retained. The examples are calculated accurately to four

places.

For the normal, logistic and Cauchy distributions we

used numerical integration as mentioned previously. As an illustration

we take n=10, d=2, yd='9786, 'd+l=.8 90 7 . In Table 1 we show

I() for A = .1 (.1) .9 and y = yd - (yd-yd+l )I in parentheses.

Linear interpolation results are provided for comparison.

- Table 1 about here -

Note in Table 1 how close y is for all X ari for the p

spread of distributicus uniform to Cauchy. The logistic distribution

was indistinguishable from the normal distribution so it was not

included in the table.

If the underlying distribution can be supposed to be symmetric

then we recommend using formula (7) to determine X from I
p

For the example considered here, if we want a 95% confidence interval

then from (5) I = .3254 and from (7) N = .66 . Hence

X= .34X(2) + .66X and X. .34X + .66X provide the
(2) (3) (9) (8)

95% confidence interval.

• .



In Table 2 we illustrate the n=10, d=2 case for the

asymmetric distribution in Example 3. The table shows the lower

and upper tails, a and au I and then compares y =- L -

to the y calculated from the double exponential example.

-Table 2 about here -

Table 2 shows that mild asymmetry does not matter much

and we would still use (7). In the pathological case, T=10,

the results were surprisingly close even though the two tails

differed by quite a bit. Further, for this extreme case, linear

interpolation is at least twice as far from y as (7).

Hence, we conclude that for most practical situations

(7) provides an accurate interpolation formula.
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Table 1. Interpolation Factors and Confidence Coefficients.

A DE U N C LINEAR

.1 .027(.976) .023(.977) .025(.976) .026(.976) .1(.970)

.2 .059(.973) .052(.974) .055(.974) .057(.974) .2(.961)

.3 .096(.970) .091(.971) .092(.971) .094(.970) .3(.952)

.4 .143(.966) .137(.967) .139(.966) .141(.966) .4(.943

.5 .200(.961) .200(.961) .200(.961) .200(.961) .5(.935)

.6 .273(.955) .282(.954) .280(.954) .275(.954) .b(.926)

.7 .369(.946) .396(.944) .388(.944) .373(.946) .7(.917)

.8 .501(.935) .553(.930) .536(.931) .506(.934) .8(.908)

.9 .692(.918) .753(.912) .736(.914) .694(.918) .9(.899)

• DE = Double exponential, U Uniform, N - Normal, C - Cauchy.

•* The number in parentheses is the confidence coefficient.

..--".'.'.-..-'................'.."....° - 4" .... .
-- m m _ o _ . q • -- dkq e , -e--t -m . . . . . J M l * a d 
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Table 2. Confidence Coefficients in Asymmetric Case

T = 2

xU a L  y DE

•1 .0119 .0117 .976 .976

.2 .0133 .0130 .974 .973

.3 .0151 .0146 .970 .970

.4 .0173 .0165 .966 .966

.5 .0201 .0189 .961 .961

.6 .0237 .0220 .954 .955

.7 .0284 .0262 .945 .946

.8 .0346 .0320 .933 .935

.9 .0430 .0407 .916 .918

i.T *=10

NA y DE

.1 .0163 .0109 .973 .976

.2 .0220 .0112 .967 .973

.3 .0275 .0115 .961 .970

.4 .0325 .0120 .956 .966

.5 .0372 .0126 .950 .961

.6 .0414 .0135 .945 .955

.7 .0452 .0149 .940 .946

.8 .0487 .0175 .934 .935

.9 .0518 .0236 .925 .918

....-..-.... -. ,... -...-.
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